

Possibilities and challenges of measuring small fibre composite system structures using terrestrial laser scanning

Laura Balangé, Volker Schwieger, University of Stuttgart, Germany

PLATINUM SPONSORS

CHCN

Brisbane, A

alia 6–10 April

Australian Government

Brisbane, Australia 6-10 April

Outline

- Motivation
- Principles of coreless filament winding •
- Test setup and scanners
- **Evaluation**

ORGANISED BY

- Comparison of laserscanners
- Influence of material
- Intensities at "edge" areas _

Geospatial Council of Australia

Conclusion and outlook

C

PLATINUM SPONSORS

Leica

CHCNAV

Brisbane, Australia 6-10 April

Motivation

GRAND CHALLENGE:

- Urban population growth: 2.6 billion people until 2050
- Building floor area: needs to be almost **doubled**
- Required construction: 65.000 m² / h for 3 decades

2017

Geospatial Council of Australia ORGANISED BY FIIG

Brisbane, Australia 6-10 April

Principles of coreless filament winding

- Fibre-reinforced polymers (FRP) are used since many years for structural applications in industries like automotive, aeronautics or ship-building
- Carbon fibres have a low thermal expansion, a high corrosion resistance and a high strength to weight ratio
- Developments in the robotic fabrication makes the design based on a fibrefibre interaction instead of expensive formworks possible
- Monitoring of fibre geometry (position, orientation and cross-section is needed)
- \rightarrow Is it possible to monitor the fibres geometry using TLS and what are the requirements for the measurement device?

ΕI

Brisbane, Australia 6-10 April

Test setup and scanners

- Investigation of surface
 - Use of AESUB scanning spray
- 3 different laserscanners
 - Trimble X7 (pulse-scanner)
 - Leica HDS7000 (phase-shift scanner)
 - RieglVZ2000 (pulse-scanner)

	Resolution at 3 m	Footprint size	Points on the object	Points with part of the spot on the object	• • • •
Leica HDS7000	1.8 mm	4.4 mm	5	8	
Trimble X7	1.5 mm	4.4 mm	6	9	
Riegl VZ2000	2.1 mm	19.8 mm	4	14	Object

Object

Meter

Resolution 1

Resolution 2

Brisbane, Australia 6-10 April

Evaluation – Comparison of Laserscanners

- Mixed-pixel effect can be detected for Leica HDS7000 scans → phase-shift scanner
- Nothing comparable with Trimble X7 and RiegIVZ2000

Trimble X7

-0.05

-0.1

-0.15

-0.25

-0.3

-0.35

-0.15

-0.25

-0.3

-0.35

-1.3

-1.2

E -0.2

E -0.2

Brisbane, Australia 6-10 April

RiegIVZ2000

-1.1

x [m]

-0.1

-0.15

-0.25

-0.15

-0.25

E -0.2

E -0.2

Evaluation – Comparison of Laserscanners and Influence of Material

-0.15

-0.25

-0.05

-0.15

-0.25

-0.3

-0.35

13

-1.2

E -0.2

E -0.2

Without Spray

With Spray

Locate25

 Complete detection of the object only possible with Trimble X7 without scanning spray

AND

WORKING

WEEK 2025

- Thinner segments especially for Leica
 HDS7000
- Improvements of completeness with spray for Leica HDS7000 and RiegIVZ2000
- Decreasing intensities towards the edge of the object especially with scanning spray

→ Phase-shift scanner (Leica HDS7000) is not suitable for this task, further investigations for Trimble X7 and Riegly Z2000

-1.1

x [m]

Leica HDS7000

-1.1

-1.2

PLATINUM SPONSORS

Leica Geosystems

-12

0.8

0.6

0.4

0.2

FIG Brisbane, Australia 6-10 April

Trimble X7

Without Spray

Meter

With Spray

spatia

Council of Austral

Evaluation - Intensities at "edge" areas

AND

- Decreasing intensities towards the edge can be detected in almost all scenarios
- Stronger differences using the scanning spray
- Section 2: Edge is more clearly defined

WORKING

WEEK 2025

- Perpendicular measurements
- Size of the point cloud differs with and without scanning spray

Riegl VZ2000

Locate25

$$\begin{array}{c} \begin{array}{c} 0.135\\ 0.14\\ 0.15$$

Without Spray

With Spray

0.8

0.6

0.4

Brisbane, Australia 6-10 April

Conclusion

- It is possible to detect individual fibre bundles using TLS
- Quality and completeness is highly dependent on used scanner
- Pulse scanner with small footprint are best suited for this task
- In this study Trimble X7 performs best
- Completeness improved with scanning spray
- Measurements without scanning spray fit better with the expected geometry

Outlook

- Investigation of several instrument points
- Use of reference generated with industrial measurement system like a light strip projector

Brisbane, Australia 6-10 April

Thank you for your attention!

Laura Balangé Institute of Engineering Geodesy, University of Stuttgart Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany laura.balange@iigs.uni-stuttgart.de

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) und Germany's Excellence Strategy – EXC 2120/1 – 390831618. The authors cordially thank the DFG.

PLATINUM SPONSORS

Meter

Brisbane, Australia 6-10 April

STEP 1: SELECT HERE THE THREE MOST RELEVANT SDGs STEP 2: COPY THE SDG INTO PREVIOUS SLIDE

Motivation

DIGITAL TECHNOLOGIES:

Adoption is slow and incremental

WORKING

WEEK 2025

 Construction least digital of all industries

Collaboration, Innovation and Resilience: Championing a Digital Generation FIG **Geospatial** Council of Australia

Brisbane, Australia 6-10 April

•

Collaboration, Innovation and Resilience: Championing a Digital Generation

Brisbane, Australia 6-10 April

FI

ECOLOGICAL CHALLENGE:

- Greatest impact: Building sector causes
 - 40% of global resource consumption
 - 40% of energy use
 - o 50% of global waste

ECONOMIC RELEVANCE:

- Biggest industry: world-wide and in Germany
- Prospect of enormous future growth

SOCIO-CULTURAL IMPORTANCE:

- Humans spend 87% of their lifetime in buildings
- Direct and long-lasting impact on quality of life
- Important cultural contribution

Brisbane, Australia 6-10 April

Motivation

- Harness full potential of digital technologies for game-changing innovation
 - Computational design and • engineering METHODS: >> ENABLE INTEGRATION
 - Cyber-physical robotic fabrication and construction PROCESSES: >> IMPROVE PRODUCTIVITY
 - Effective, truly digital material and building SYSTEMS: >> ENHANCE SUSTAINABILITY
 - ENVIRONMENTAL, SOCIO-CULTURAL AND ETHICAL REFLECTION

PLATINUM SPONSORS

Australian Government

Evaluation – Comparison of Laserscanners and Influence of Material

Locate25

Comparable effects for turned object

AND

WORKING

WEEK 2025

- Incomplete detection for RiegIVZ2000
 without scanning spray
 - only a quarter of points can be detected without the scanning spray
- → Phase-shift scanner (Leica HDS7000) is not suitable for this task, further investigations for Trimble X7 and RiegIVZ2000

Brisbane, Australia 6-10 April

Evaluation - Intensities at "edge" areas

- Background for Trimble X7
- Difference varies within the object
- Approximately 2 points difference on each edge
 - Results in change of up to 6 mm for both sides

Meter

PLATINUM SPONSORS

Leica

Australian Government